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 

Abstract—Recognizing the imposter distribution as the 

indicator of information content of the iris biometrics, we show 

using ICE1 Exp1 data: 1. There exists an encoding methods 

whose degree of freedom (DOF) is more than three-times higher 

than that of Daugman.  2. A large DOF gives a better 

performance (True-Match-Rate (TMR = 1 – FRR (False-Reject-

Rate)) at a very small False-Accept-Rate (FAR) of the order of 

108 to 1010 and permits more rotated irises (angle > 5 degrees) to 

be matched.  3. The information content of the iris has a uniform 

distribution along the polar angle direction but non-uniform 

along the radial direction of the iris.  4. DOF of the fixed mask 

matching is linearly proportional to the area of the mask.  5. Blur 

significantly affect DOF of the imposter distribution.  

 
Index Terms—Biometrics; Iris recognition; Binomial 

distribution;  Identity verification; Information content.  

I. INTRODUCTION 

AUGMAN [1]  proposed a method of encoding iris patterns 

into bit patterns, using quadrature 2D Gabor wavelets.  

He has shown that this phase information for the imposter 

distribution exhibits the Bernoulli trials of about 249 degrees 

of freedom (DOF) [2] independent of the database size and 

enables the decision about personal identity with high 

confidence.   This abstraction from the iris pattern to the 

Bernoulli trials (which has only two parameters, DOF and the 

transition probability) for the imposter distribution is the 

revelation to the iris biometrics.  Bit-pattern encoding scheme 

will share this abstraction of the imposter distribution not 

limited to the Daugman way.  Other non-bit pattern encoding 

methods so far has not shown such a simple abstraction for the 

imposter distribution nor the database-size independence. The 

genuine distribution has eluded the characterization so far.   In 

this paper, we focus on the imposter distribution and speculate 

on the genuine distribution.   

Daugman [2] discussed the quality issues in terms of “ideal” 

and “non-ideal” imaging conditions.  He declared that the 

imaging conditions do not affect the imposter distribution, but 

only the genuine distributions.   In this paper, we argue against 

this declaration.  It is generally accepted that iris biometrics is 

using the information embedded in the iris pattern which is 

revealed by near-infrared lighting.   If we regard the imposter 

distribution as the Bernoulli trials encoded by an iris template 

creation, then it is a natural conclusion that DOF of the 

imposter distribution is the indicator of the information content 
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encoded by iris template creation.   That is, anything to affect 

the information content of iris will be revealed by DOF 

change.   In particular, the smaller the information content is, 

the smaller the DOF is for the imposter distribution.   We will 

show this fact repeatedly in different context by measuring 

DOF.   

We can even make a stronger statement in how DOF 

changes.  An interesting property of the binomial distribution 

is that for two independent random variables X and Y which 

has binomial distributions with degree of freedom N and M 

but the same probability p, then the sum of X and Y exhibits 

the binomial distribution with N+M and p.   This means for the 

imposter distribution is that DOF of the iris matching for a 

fixed mask is linearly proportional to the mask area to the 

entire area if the random bits of iris template are distributed 

uniformly.  

The genuine distribution has not been abstracted for 

modeling so far.  We recognize that it should reflect the 

information content of the iris.   If there are lots of information 

in the iris (or higher DOF in the imposter distribution), then 

the compared irises must be segmented exactly to get a perfect 

match.   Therefore we expect the peak of genuine distribution 

to be slightly shifted to a larger value of the Hamming distance 

(HD) for a larger DOF encoding and the genuine distribution 

to be wider if the segmentation or the image conditions are not 

the same between the irises compared.    On the other hand, if 

the number of bits to match is less (smaller DOF), then it is 

easier to match and thus the peak should shift toward the zero 

direction and the distribution will become narrower.  This is 

the opposite to the imposter distribution where the loss of 

information leads to a wider distribution.  

As soon as realizing consequences just mentioned, one must 

be very careful in compressing the iris images so that the full 

information content should not be reduced.   That is, if 

compressed too much, one ends up a smaller DOF (wider 

imposter distribution) whose performance on the iris biometric 

is reduced.   At this time, we have no way of knowing how 

much information iris pattern contains.    We claims that the 

information is certainly larger than the Daugman encoding 

method produced.   It should be noted that the Daugman 

encoding seemed changed  because DOF listed in the patent 

[1] is 173.  One must realize that when the two irises are 

matched against different angular rotation, then the imposter 

distribution shape will get modified.  Daugman [2] modeled 

this by the “best of n” test of agreement from the binomial 

distribution described in Section III.   It is important to 

measure the DOF of the imposter distribution without rotating 

against each other.   This is usually not done when iris 

biometric performance is measured.    

Iris Recognition and Degree of Freedom 
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Several attempts [4] have been discussed to characterize 

“qualities” on the performance using the Receiver-Operating-

Characteristic (ROC) curve.  Their prediction using quality 

metrics are qualitative in nature.  We propose that any quality 

measure should be characterized by the change of DOF of the 

imposter distribution.   In this way we can actually predict the 

performance for certain quality images as a whole.  Here we 

show how two quality measures, coverage and blur, affect 

DOF of the imposter distribution in Sections V and VI.  

Our discussion will be based on our results for ICE1 

Experiment1 data [3] (Experiment2 results are similar), even 

though they are several issues regarding the data qualities and 

acquisitions (See Appendix).     

II. DOF AND IRIS TEMPLATES 

It is enough to show that there exists an bit-pattern encoding 

method of an iris which has a larger DOF that that of 

Daugman.  We developed a way of encoding iris using a polar-

unwrapped image following the ANSI-INCITS 379-2004 Iris 

Image Interchange Format standard without using the 

Daugman Gabor-2D filter.  As Daugman [2] showed, the way 

of getting the DOF is to measure the imposter distribution 

without rotations and regard it to be the Binomial distribution 

B(N, p) where N is the DOF and p is the probability : mean for 

number of successes = Np and variance = Np(1-p).  Since we 

are interested in the sample proportion (the count of successes 

divided by the number of observations), we calculate N and p 

from the imposter HD distribution by N = µ(1-µ)/σ2 where µ is 

the mean  and σ is the standard deviation of the imposter 

distribution. Figure 1 is our encode result for NIST ICE-1 

Experiment 1 for imposter distribution. 

 

Fig. 1.  The imposter distribution and two binomial distributions 

“normalized” for the size of  the database.   The solid curve corresponds to 

the imposter distribution with our encoding.   The long-dashed curve is the 

binomial distribution with N=801 and p=0.4953.  The short-dashed line is 

the binomial distribution of Daugman [2] with N=249 and p=0.499. 

 

As you can see, the binomial distribution fits very well.  Note 

that the DOF  is 801.  The binomial distribution is normalized 

so that the total area is 1,002,386.   Our distribution has a 

slight shift from 0.5 which indicates the slight correlation on 

the transition rate.   Note that the higher DOF is, the sharper 

the imposter distribution is.  Ma et al. [5] also obtained a 

narrower imposter distribution (i.e. larger DOF) in CASIA Iris 

Database of 2,297,019 comparisons, using a 1-D wavelet 

encoding.   Unfortunately, we cannot confirm that this non-

public database exhibits the same behavior as ICE1 data does 

and these authors did not provide the value for DOF.  We are 

sure that there are multiple encodings which provide larger 

DOFs than that of Daugman.  We encourage readers to search 

an encoding scheme, since we are not sure what is the largest 

DOF is for iris biometrics.    

III. DATABASE SIZE INDEPENDENCE OF DOF 

 

We divided the ICE1 Exp1 database into two in the middle 

of the listing of files and calculated DOFs and compared them. 

 The results are: N=801, p=0.4953 for the whole database, 

N=825, p=0.4949 and N=788, p=4953 for half the database.   

The mean is 805 and the stddev is 18.7.   Thus we confirm the 

Daugman observation  that DOF is independent of the datasize 

even though our encoding method differs from him. 

    

 
Fig. 2.  The database size independence of DOF.  

 

IV. IMPLICATION OF A LARGE DOF 

By identifying the imposter distribution without rotation as 

the binomial distribution, we can make predictions without 

looking at the database.  In particular, the shape of the 

imposter distribution gives the false-accept-rate (FAR): Given 

the threshold in the Hamming Distance (HD), FAR is 

calculated the cumulative percentage of the imposter 

distribution below the threshold as shown by Daugman [1] as 

shown in Figure 3. 
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Fig. 3.  The relation between FAR and FRR.   The smaller the threshold for 

FAR, the larger FRR is.   One also notice that when the motion of the 

threshold is small, the increase in FRR is small. 

 

We can calculate FAR for various thresholds by knowing DOF 

(N) and probability p of a binomial distribution, .  

Here are the values for N=249 (Daugman) and N=801 (us) 

with or without rotation using the explicit binomial 

distributions.   In order to make our predictions realistic, we 

used the Daugman shift equation for the shifted imposter 

distributions, i.e. the probability of m shifted false match 

 and its cumulative distribution  are given by 

corresponding non-shifted ones,  : 

 

                             (1) 

 

                                     (2)  

 

where  .   The meaning of shift=7 is +/- 3 

rotation along the angular direction of the template whose size 

is 256 (i.e. 360/256 = 1.41 degrees per shift or up to +/- 4.22 

degrees rotation).   The shift of 21 is +/- 14 degrees.  By 

finding threshold values for FAR values,  10-6,  10-8, and 10-

10.(binomial distribution has discrete values of x and thus we 

pick the closest x for those FAR values), we have the 

following table I and II.   

 

N=249 No rotation   

FAR 1.35E-06 1.04E-08 1.90E-10 

Threshold 0.349 0.321 0.301 

Delta 0.028 0.020  

    

N=249 Shift = 7   

FAR 1.31E-06 1.55E-08 9.60E-11 

Threshold 0.337 0.313 0.289 

Delta 0.024 0.024  

    

N=249 Shift=21   

FAR 9.61E-07 9.22E-09 1.16E-10 

Threshold 0.329 0.305 0.285 

Delta 0.024 0.020  

Table I.  Threshold dependencies on FAR for N=249. 

 

N=801 No rotation   

FAR 1.34E-06 1.43E-08 1.17E-10 

Threshold 0.412 0.397 0.383 

Delta 0.015 0.014  

    

N=801 Shift=7   

FAR 1.06E-06 1.22E-08 1.23E-10 

Threshold 0.404 0.391 0.378 

Delta 0.014 0.012  

    

N=801 Shift=21   

FAR 1.00E-06 9.73E-09 1.38E-10 

Threshold 0.400 0.387 0.376 

Delta 0.013 0.011  

Table II.  Threshold dependencies on FAR for N=801. 

 

Note that the threshold shift between two order of 

magnitude in FAR is around 0.024 for N=249 and 0.013 for 

N=801.    Observing that the genuine distribution has the 

similar shape for both N=249 and 801, we see the following:  

the decrease in the true match rate (1 – FRR) is much smaller 

for the larger DOF imposter distribution when FAR is changed 

by the same order of magnitude.   That is, the larger DOF 

encoding will yield a straighter-line behavior under the ROC  

performance curve.  Conversely, the smaller DOF encoding 

will yield the faster drop in the true match rate when FAR gets 

smaller. 

As emphasized by Daugman [2], the requirement of 

operating in one-to-many “identification” mode are vastly 

more demanding than operating merely in one-to-one 

“verification” mode due to the fact that the probability of 

making at least one false match when searching a database of 

N unrelated patters is  where   is 

the probability of not making a false match in single 

comparisons, or  for small .   Therefore, having a 

larger DOF encoder of iris image will yield a much better 

performance in “identification” mode.    Figure 4 is the 

qualitative picture of what we just discussed. 
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Fig. 4.  ROC performance difference between a large DOF vs a 

small  DOF imposter distribution.  

 

Another merit of having a larger DOF is the tolerance of 

more rotated irises to be matched.   For N=249, FAR=10-6 

threshold changes from 0.337(shfit=7)  to 0.329 (shift=21).  

Meanwhile for N=801, FAR=10-6 threshold changes only from 

0.404 (shift=7) to 0.400 (shift=21).  Again this shift is twice as 

much for N=249.  The drop in 1-FRR is bigger for N=249. 

Unfortunately the ICE1 Exp1 has only 1 million matchings 

and thus cannot go beyond 10-6, but we confirmed this straight 

line behavior for undisclosed iris data by those people who 

used our encoding/matching SDK.  

V. INFORMATION DISTRIBUTION IN IRIS 

If we believe that the DOF for the imposter distribution is 

the indication of information content of encoded iris, then it is 

natural to ask about how the information is distributed in the 

iris.   Because we have a larger DOF encoder, we can answer 

more definitely about this question than a smaller DOF 

encoder can provide, since the results will be noisy.   We will 

show that the information on the iris is distributed uniformly 

angularly.   We have a slightly less conclusive data on the 

radial information content. 

In order to ask this question, we created several masks for 

matching to get the DOF value for each mask.  As discussed in 

Appendix A,  many images have lower coverage value than 

70% and thus we put the 50% mask always to calculate the 

DOF for the imposter distribution.   First we compared the 

25% masks, one with upper part not masked and another with 

the bottom part not masked as depicted in Figure 5. 

 

 

Fig. 5.  Two masks of 25% coverage.  

 

 

Fig. 6.  Genuine and imposter distributions for two 25 % masks. 

 

First we observe in Figure 6 that DOFs for the imposter 

distribution (311 and 286) agree within 8 % (mean 298.5 

stddev 17.7).   Second the genuine distribution overlaps nicely.   

Note also that the genuine distribution has the anti-correlation 

which goes beyond 0.5 when not rotated to match.     

Encouraged by this result (the iris information is equally 

distributed between the two regions, we divided the region 

further into 12.5% of the coverages shown in Figure 5. 

 

 

Fig. 7.  Four different 12.5% masks to obtain DOFs. 
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Amazingly we have DOFs 154, 157, 145, 155 with mean 

152.7 and stddev 5.32.   Note that the DOF for mask 25% is 

just twice as big.    Again both the imposter and the genuine 

distributions overlay nicely.   We interpret this fact as the 

information content of the iris being equally distributed in 

polar angle direction.   We should be able to do for the upper 

half if we had the iris database without eyelid or eyelash 

obstructions as explained in Appendix. 

 

 

Fig. 8.  Genuine and imposter distributions for four 12.5%  masks. 

 

We did a similar measurement for the 50% mask to obtain 

DOF = 557, which is slightly less than 150x4 = 600.    If we 

had a fully opened iris database, we would have obtained DOF 

= 150x8 = 1200.    

Encouraged by the results so far, we looked at the radial 

information content of the iris.   We employed the masks along 

the radial directions depicted in Figure 9: 

 

 

Fig. 9.  Four different 12.5% masks to obtain radial dependency of DOF. 

 

To our surprise, there are significant differences in DOFs for 

imposter distribution: 228, 138, 151, and 170 with mean 172 

and stddev 39.7.   Note also that genuine distributions are 

significantly different.    If we regard DOF as the information 

content, then the inner most region has the largest information 

next to the outer most region.   We like to discuss the 

significance of the differences in genuine distributions in 

future. 

 

 

Fig. 10.  Four radially-different 12.5% masks genuine and imposter 

distributions. 

VI. BLURRED IMAGES AND DOF 

Now we discuss the effect of image blur on DOF.   We 

employ a very simple model of blur, using different width of 

Gaussian filter.   That is, we apply a Gaussian filter on the 

images and then do the matching on the filtered images. 

Applying a Gaussian filter is equivalent of changing the MTF 

(Modular Transfer Function) of the acquisition lens in that the 

frequency content is changed.   Thus the Gaussian filtered 

image is simulating a bad acquisition system or out-of-focus 

acquisition.  We have the following results with g=1, 5, 10, 

and 15 where g is the radius of Gaussian filter, e.g. g=1 

corresponds to a 3x3 Gaussian filter.    

 

 

Fig. 11.  The effect of blur on DOF.  Images are filtered by Gaussian filter 

with radius g=1, 5, 10, and 15. 

 

The DOFs are 801 (g=0), 667 (g=1), 450(g=5), 282(g=10), 

and 186(g=15).   It is interesting to note that the probability 

gets smaller for increasing gauss filter radius.   We believe that 
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this is due to the long range correlation introduced by the 

filter. 

VII. CONCLUSIONS 

Using ICE1 Exp1 data, we demonstrated the importance of 

DOF of the imposter distribution on the iris biometric 

performance. Obviously what we demonstrated must be 

repeated on other iris databases.  In particular, we look for an 

encoding method which has a large DOF in the imposter 

distribution in order to have a better matching performance in 

small FAR. We may use different encoding for different 

purpose: one-to-one verification uses a smaller DOF encoding 

and identification uses a larger DOF encoding.  We 

demonstrated that the iris information is equally distributed 

along the polar angle direction, but not along the radial 

direction.  We noted the inner most region had the highest 

DOF (the outer most region was the next highest).  

APPENDIX 

WHY ICE1 DATA IS NOT IDEAL? 

After receiving the ICE1 data from NIST, we realized 

several issues with the data.    Obviously these artifacts benefit 

the algorithm made to work with these images.    However 

these artifacts will affect accurate segmentations of iris, which 

leads to a wose ROC performance than a better database can 

exhibit. 

1. The gray scale is manipulated in that you can see not 

all gray values are present between 0 and 255.   

Interestingly the pupil area is mostly 0 but not 

consistently.   This indicates that some  sort of 

preprocessing is done on acquired images on LG 

2200.   Here is the grey value of image 

287810_243007 which you see the tooth-like 

structure in the gray histogram: 

 
Here is the first few gray value counts: 

250 0 144 266 0 386 298 0 369 210  0 226 142 0 

Every third gray value is absent. 

It turned out  that this behavior applies to all 

images in ICE1 Exp1.  The purpose is unknown to us, 

but the Iridian/LG must use this property. 

 

2. Many images have interlaced artifacts, i.e. even lines 

and odd lines have shifts.  For example, the image 

291472_246587 is the following: 

 

 

3. The number of images per person is not fixed.   Here is 

the list of images per id: 

 

 
 

Therefore the any statistical measurements against 

ICE1 images are dominated by those who have more 

images.   

 

4. The iris opening is widely distributed and about 20% 

of images have less than 70% coverage (ANSI-

INCITS specification).   This has an important 

implication for the DOF of the imposter distributions. 
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